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Real cases
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Leaning Tower of Pisa

Causes of the leaning

* Creep (200 years for completing the construction)

* Non-homogeneous soil, mostly normally consolidated or
slightly over consolidated clays

e Structural issues
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Embankment foundation in Trento

Field evidence: road embankment founded on a thick layer of organic clay (Trento, Italy).

| I'.?.- I'. \
“ Piles improved zone

Problem description:

Madaschi and Gajo (2015)

Settlement gauges installed at the beginning of the construction measured 1 m of settlement after less than 1 year
At bridge abutment, the embankment foundation is reinforced with piles

Geomechanics- Fall 2024
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Embankment foundation in Trento

The organic layer is 9 m thick and the settlement at section 4V is more than 1 m after 1 year.

Stratigraphy — Boring S11
0.00 m
1.00 m
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3.00 m

Silty Sand

17.70 m —
' Coarse Gravel

19.70 m

) \{;/:\< Bedrock

Madaschi and Gajo (2015)
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Diaphragm wall in Taipei

Bottom-up Top-down
<« method method -
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Note: Numbers represent excavation stages

Deflection increases due to the longer construction duration in top-down method (Kung, 2009).
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Depth (m)

Stiffness of floor slab in this
case equals to 80000 (kN/m/m)

—— Caused by excavation alone

— — Caused by excavation and creep
effect during the floor slab
construction at each stage

50 100 150
Wall deflection (mm)
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Extensive pumping to extract water
from Mexico City’s subsoil has
caused regional sinking

Mexico city

Pumping

l

Water table decreases

l

Effective stress increases

l

Soil compaction
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cPi-L

The city pumps water from the underground, the water table decreases and so the effective stress
increases, inducing a soil compaction — uneven because of the inhomogeneous soil strata.

Mexico city

Volcanic soil

Water table

\L |— Clay

The New York Times

https://www.nytimes.com/interactive/2017/02/17/world/americas/mexico-city-sinking.html
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Hydro-mechanical vs
VISCOUS response




Hydro-mechanical response: effective stress

« Terzaghi’s effective stress (1936)

4

’ —
0ij = 0jj — PwOi;

/N

Total stress
« Assumptions

Pore water
pressure

» Fully saturated granular material

St » Incompressible fluid and grains
- Equivalent

contmuum oL . AII measurable effects produced by a cha_nge
R R e in the state of stress are due to a change in the

effective stress (Terzaghi, 1936)

Effective stress
SSaJ)S 9AI1}0943
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Hydro-mechanical response: effective stress

Ground surfacel

Stress state at pointP: 0y = VsqtZ ,
0.

h|

/
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cPi-L

Hydro-mechanical response: effective stress

Water flow from the
Ground surface /drilled well

v

Pore water pressure decrease at point P
causes an increase of effective stress

» dO"ij = dO'ij — deSU

Deformation (i.e. settlements)
are induced

» deg = CijkldU'ij

q
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Hydro-mechanical response

touche du comparateur
I'F:h |-H-| L
]

Oedometric test
Usually performed to analyze the vertical settlement
problem related to H-M coupling

Ta=(R
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 Load applied in steps
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Hydro-mechanical response

Oedometric test: settlement curve

« Instantaneous application of the load

« Initial undrained response of the material (generation of the excess pore water pressure)
« Dissipation in time of the excess of pore water pressure (drained process)

« Consolidation of the material during time - settlement

H[mm fen=70s t
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e, =1.50 I I
o B i B i . =) - -
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So9f u |
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Lancellotta (2009)
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Oedometric test: Instantaneous application of the load Water overpressure dissipates over time
settlement curve 3

Hydro-mechanical response

[
[
|
Ao - total stress :
|
!

Ap,, — pore water overpressure

[

A i log (time)

Ao — total stress Effective stress increases as

|

i

: consequence of the water pressure
Ao’ — effective stress | dissipation
|
i
|

»
»

End of the consolidation process:
» pore water pressure is completely dissipated
» the material is subjected to a constant stress

T log (time)
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Hydro-mechanical response

Viscous deformations
(Secondary compression)

End of Primary
Condolidation

Oedometric test: t  Load application
|
settlement curve |
Water overpressure dissipates
Ao - total stress / |
Ap,, — pore water overpressure E
Instantaneous i . log (time)
deformation 1 :
<
I
|
I
I
I
I
I
I
I

O displacement

~
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-
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|
|
Consolidation I
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Hydro-mechanical response

» Load application

Oedometric test: Ao - total stress

Ap,, — pore water
settlement curve overpressure

I

Ao’ - effective |
stress ]
|

I
Water overpressure dissipates
I

v Vv

log (time)

Viscous deformations
(Secondary compression)

The deformations are
induced by the

change in effective
stress

O displacement

Effective stress is
constant. The
deformations are
induced by creep

\ e phenomenon
Primary '

|
|
Consolidation I

~~o
~<
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Viscous deformations

, log (time)
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Viscous deformations

Time dependent deformations
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Rheological aspects
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Viscous behaviour

Macroscopic stress distribution Microscopic structure of a
in a laboratory sample sample
o
L EEERE
— «— I |
|
—>|  Eoe— | |
|
O3 - —> i i
1
% & e il
| | | At the contact between particles,
shear and normal forces are
generated
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Viscous behaviour

Fine grained geomaterials

. Structure of clay is card-house structure

. The macroscopic stress is microscopically distributed in force chains

. The particle contact are subjected to uneven forces, tangential and normal

. Sliding and rotation of particles occur lF

. Contact between particles is retarded by adsorbed water Bulk water
_ o
Gaseous phase i Adsorbed

] ;/77 water

IC

Solid phase

/
T
——)
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Experimental evidence of
the viscous behaviour




Rate and Time Dependency

Time dependent effects affect the response of many engineering applications
In general, three conditions are identified in the field of viscous phenomena:

* Creep: deformation under constant load conditions
« Relaxation: stress decrement under constant strain conditions

« Strain rate: response dependent on the applied strain rate
(change in deformation with respect to time)

Both triaxial and oedometric tests can be used to
investigate the viscous behaviour of geomaterials
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Triaxial testing - Creep
CREEP: Time dependency of strains

Triaxial tests terminated at a deviatoric stress q. lower than
the deviatoric stress corresponding to failure conditions g; and
then maintained constant

Response at constant deviatoric stress q,

Deviatoric strain increases in time at:
- Decaying rate (C1)

- Constant rate (C2)

- Accelerating rate (C3)

Depending on the ratio [q./ q/]

Geomechanics- Fall 2024

o

Qe

A
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cPi-L

Triaxial testing - Creep

4 ¢ | rupture

Triaxial Creep test Deformation
under constant load

Depending on the analysed material it is possible to identify | |
some common features of the time dependent response >

The typical time dependent deformation of engineering y
materials under constant load shows three characteristic

>

phases.
Strain rate
Under constant load —

Secondary | Tertiary

Creep |_Creep*
* The presence of the tertiary phase depends / | ¢ | \t*
on the material and on the stress level The strain rate The strain rate is Th.e strain rate

decreases constant increases

Augusteesen et al. (2014)
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mpre
Triaxial testing - relaxation cPrL

RELAXATION: Time dependency of stresses

€4
Triaxial tests terminated at a given deviatoric strain £*
and then maintained constant

Response at constant deviatoric stress €

Deviatoric stress [q] decreases at constant deviatoric
strain [e*]

e >
Increasing ¢, Constant g,

Geomechanics- Fall 2024
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e
Oedometric testing cPrL

The most common experimental test to assess the compression behaviour of soils is the oedometric test.

One of the simplest parameters to describe viscous behaviour of geomaterials is the coefficient of

secondary compression (C,), defined as the slope of the oedometer curve in e — logt plot at the end of the
primary consolidation

Viscous parameters
Settlement curve

> M

Ae Ae Ca

Ooz — Coz- — —
" Alogt 1+ eq

end of primary - 10g ¢
consolidation

From C, it is possible to estimate the amount
of viscous deformation of the soil:

l
>logt ey (t) = Cyelog (1 + t_>

1

Geomechanics- Fall 2024
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e
Oedometric testing cPrL

Typical C,/C, values for geomaterials

C,/C, ratio is usually used to characterize the Creep rate strongly depend on the nature of clay. The smaller
a c . g .
importance of the viscous behaviour compared to the the particle, the greater the specific surface area (i.e.

consolidation process surface area per unit mass of solid).
N

Table 16.1 Values of C./C, for Geotechnical / Bentonite- Steady state creep rate
Materials / sand

: ,’I Creep rate increases with:

Material Co/C. - Plasticity
/ llite- - Activit

Granular soils including rockfill 0.02 = 0.01 ; ilite Sa'?f{' - Water Zontent
Shale and mudstone 0.03 =0.01 ,'I el
Inorganic clays and silts 0.04 = 0.01 ;! el
Organic clays and silts 0.05 = 0.01 [ -
Peat and muskeg 0.06 = 0.01 Kaolinite-sand

Terzaghi, Peck and Mesri (1996) Percent clay sizes finer than 2 micron

Sketch after Mitchel & Soga 2005

Geomechanics- Fall 2024
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Oedometric testing

Apparent preconsolidation pressure

VERTICAL PRESSURE t/m?(log scale ) « Compression at constant effective stress: for instance due to the gain of

4 6 8 0 2 5 2 30 resistance against compression
T [ 1 I !

SEDIMENTATION

» Apparent preconsolidation: New preconsolidation pressure obtained after a
consolidation at constant pressure

DELAYED COMPRESSION

\
\ N\

R VA
E PePo 2p-(pc~Po)
o o \|P A
=) - ‘O—c' Rot 2P €; = instant compression = Ce log Pc*[Ap—(pc-poﬂ
Q 1+eo P
> £. c
W : €. = total imstants de - The apparent preconsolidation is not due to the
= t + . .
t 7total tinstantsdelayed) By + Ap overburden experienced by the material anymore, but
£ S compression after 3000y, = log o . . . .
1eeg Po reflects the gain of stiffness/resistance to compression
' from the consolidation at constant pressure
' ] ™ PERFECT CONSOLIDATION TEST
r.

—

ap

H Bjerrum (1967)
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cPi-L

Oedometric testing

The same material response can be obtained with a constant rate of strain oedometric loading (CRS).
The increase of the applied strain rate leads to the development of an apparent preconsolidation stress.

0

ot
T

—_
T

[70]

60 100 150 200 Leroucil and Kabbal (1985)
roueit an abba

o/ |kPa] SR ’

* The increase of the observed preconsolidation stress is almost linear with the logarithm

of the applied strain rate
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Rate and Time Dependency

» Soils can display a highly viscous behaviour

» The main macroscopical displays of such behaviour are:
a. strain rate effect (rate dependency)
b. creep (time dependency of strains)
c. relaxation (time dependency of stresses)

 Various macroscopical experimental observations all express similar fundamental
microscopic processes

Long term resistance |:[> very small strain rate E{> elastoplasticity

——> Time-dependent behaviour (Argotropy)
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Constitutive modelling
Visco-elasto-plasticity




Constitutive modelling
The viscous deformations can be ELASTIC or PLASTIC

l

‘ 1) Viscoelastic models ‘

‘ 2) Elastic visco-plastic models‘

Elastic deformations are modelled with springs Viscous deformations are modelled with dampers
, o o
. le 1%
i £ = — J_ 7 de” = —dt
E Ei ) -
n: viscosity

E;: elastic stiffness
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Viscous model

Standard model
Two elements: the spring, and the Kelvin-Voigt unit connected in series
Instantaneous elastic Spring and dumper connected in parallel
deformation (reversible) - Viscous deformation (reversible)

a) b) Creep test c) Relaxation test
e { o = cost e = cost

[ . - t - t
e’ E, n oy 3

l

1
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Viscous model

Standard model
Two elements: the spring, and the Kelvin-Voigt unit connected in series

Same stress ¢

_ le _ _ _ ve wve
oco=E € =0=E, € +n¢
b) Creep test c) Relaxation test
a €
p—— — Cumulative strain g
ie ve a a t
e=¢ +e " =—+—1A—exp(——
t t E, E, ( p( tr))

ith t, = 1
WI T Ev
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Elastic visco-plastic model

Maxwell model
Spring and dumper in series

Plastic deformation induced by the dumper are irreversible (8;)

total strain
'T‘ Creep test
e=¢"“+e? o
l l Gl
elastic  plastic viscous ¢! Ej
instantaneous strain  strain '
| £ t
p 1
o) gv
E=—+—t
i n
A
#)
t
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Elastic visco-plastic model

Bingham model
e Africtional element is introduced in parallel with a damper
* Avyield stress G, has to be exceeded in order to have plastic viscous deformatiogg

total strain Creep test Relaxation test
a) gl
. v _
e=¢e"“+¢" o —
( --0 < (rli)“Ci o4
gleL Ei ope |
elastic  plastic viscous
instantaneous strain —
strain g% \ J 7 ‘
fo<o.—»> &= g€ = 2 :
— — t
4
0O O — Oy
ifo>o0, 2 £=—+—"t¢ t1 t
E; n
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Advanced visco-plastic model

— For the modelling, we are no more interested in the evaluation of strains but of strain rates

Total strain rate

\

Viscoplastic strain rate

E =&°+¢&”7
/\ _______

o /7 58 \\\
e =C :0' ¥ = A Py ) « Perzyna Framework
\“'-.,__ O:",/ .
Elastic strain TR « Consistency framework
rate « Secondary consolidation

* Elastic behaviour
— Viscoplastic model is built with the same elements as e Yield function

elasto-plastic models (i.e. Modified Cam Clay model) . Plastic potential and flow rule
* Hardening rule
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Advanced visco-plastic model

Conventional Perzyna approach (Perzyna, 1966)
Problem n”1:
 Use of a rate-independent yield function that can become larger than zero Consistency condition

L— New yield function for viscoplasticity: Overstress function is violated

Problem n°2:
Experimental evidence of
strain rate dependency

« Within the usual yield limit f;, the response is purely elastic
« Beyond the usual yield limit £, the response is viscoplastic

------------ O.
Viscous regime ~~~@. ! . T
~. - »
. Rate lpdependgnt f(o',el)
~ K yield function
\
overstress \\‘

Non-viscous GOij
regime

Overstress function O(f)= (%)

Q\" — o o — -

()]
fs Flow rule &r :< (f)> 8g'
o, n oo
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mpr
Advanced visco-plastic model cPrL

Consistency approach (Wang, 1997)

e Introduction of variables making the yield function rate-dependent
e The rate-dependent yield function governs the irreversible viscoplastic strain

— extension of the classical elasto-plastic approach

e Viscoplastic strain rate is implicitely determined via the rate-dependent consistency condition

Rate-independent f(o" & 8vp)
yield function P
.y 2 O
Flow rule g? =1 g’
oo
Consistency equation i o i " g i
oo’ oe? o4

v

Geomechanics- Fall 2024
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Advanced visco-plastic model

0
1. Observation — Different preconsolidation
pressure obtained for the same material at
different strain rates (CRS tests) 5
2. Hypothesis — Preconsolidation pressure p, _
depends on the applied strain rate — 10
3. Mathematical formulation: Preconsolidation T 15
expressed in terms of the strain rate 2
20
25
60 100 150 200

o |kPa]
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Advanced visco-plastic model

cPi-L

 The unique vertical effective stress — vertical viscoplastic strain — vertical viscoplastic strain
rate concept is expressed through the evolution law of the apparent preconsolidation pressure with

viscoplastic strain rate

8v,3

8\:,2

. [ . W, 1
8\.-', [ 8\:,2 8\:’,3
|

hlpéJ hlp&z hlp&3

Inp

Geomechanics- Fall 2024

/ 14 !
Po,1 Po,2 Po,3
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vref

Leroueil et al. (1985)




Advanced visco-plastic model

Performances of the evolution law:

vp | Ca
/ ’ &y
.V .V
po’gvp po’gvg gl’p
vref

150 - R - 180 — i 150 ]

140 - ® Exp (CRS tests) - - ® Exp(CRS tests) - i ®  Fxp (CRS tests) |
_ 3 W Exp(creep tests) - _ 160 W Exp (creep tests) | _ 140 — Num
IS — B — g
S 130 Num 3 i Num g
e N s 140 I b
Z 120°F Z 7
8 & 2
j=9 r j=9 - j=9
g 110} £ 120 g
= 100 = | =2
g : 2 100 g

N = L

g™, i 2
& I £

80

?0: L |||||| L1 || Loaa | L ||||: 60 I ||||||.| i |.|||.|| L |..|||.|_ R 80- I ||||||| 1 |||||||| Lo ||||_ Lo

10" 107 10° 107 10" 10 107 10° 107 10 10 107 10° 10° 10
Strain rate [s'] Strain rate [s'] Strain rate [s']
Batiscan clay (Leroueil et al., 1985) Backebol clay (Leroueil et al., 1985) St Césaire clay (Leroueil et al., 1985)
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Advanced visco-plastic model

Apparent preconsolidation pressure Cam Clay type model

Hardening variable 4

>

_ vp
P('),ézg = Pélézgloexp(ﬁfv )

8.17 > 81.,0
Evolution of the yield surface with the plastic strain

Time effect

\ 4

vp (Cy
€

/ I
Po,evP T Po,evp|\ o > P

vref

Dependency of the 7, ;»
with the strain rate

* This rate-dependent preconsolidation pressure is
then introduced in the yield function formulation
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Advanced visco-plastic model

ACMEG - VP model (developed at the LMS-EPFL)

q

+ Elastic behaviour & =S+ =2 &
K 3G

. . I} / ! p,d
* Yield function  fiso=p'—-pPo =0 faew = 4% = M [p 2 <1 + b’ Po )]

v
vp
vref

Ca
vp
« Hardening rule po = Poes X <é ) x exp(fe,”) q

« Potential function g =0 — 1} _— yield limit f,,,
B a« (4 1 (pd\*™*
Ydev = 4 a—1 p a p6

« Consistency condition AP f =0

Isotropic visco-plastic
yield limit f,__

f= of .d'+i% AP +i% AP =0 ’(époggvl)
5‘0-' . agvp a,lvp . ag'vp a,ivp . Pol&v2
v ~ v ~
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Advanced visco-plastic model

Numerical example of a creep test

e Creep loading

Vertical strain [%o]

25 L b b b by Iy
0 50 100 150 200 250 300

Vertical effective stress [kPa]

_: 0 '|"'||||"||||||||||||||"'||"|

Vertical effective stress [kPa]

0 5 10 15 20 25 30 35
Time [1000 s]

Vertical strain [%o]

 Qualitatively good reproduction of creep behaviour

e Modelling of creep behaviour possible with the consistency S T AR

approach 0 5 10 15 20 25 30 35
Time [1000 s]
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Advanced visco-plastic model

Numerical example of a relaxation test <
« Relaxation loading g -
0 3
5 — —
— i 25_....|..._|....|...._._._|....-
é 0L 0 50 100 150 200 250 300
E I Vertical effective stress [kPa]
L; [ 300 T [ [
215 i
> _ 250 .
20 - ] C
' § 200
25 : MR | R g L
0 20 40 60 80 g 0]
Time [1000 s] = [
g 100 | -
» Qualitatively good reproduction of relaxation behaviour — R
e Modelling of relaxation behaviour possible with the N D
consistency approach 0 20 10 o0 50

Time [1000 s]

Geomechanics- Fall 2024
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Vertical strain [%o]

Geomechanics- Fall 2024

Advanced visco-plastic model

Validation on a CRS oedometric test

« Constant rate of strain oedometric loading

 Calibration of elasto-plastic model parameters on
the CRS consolidation curve at 1.6E-7 s

e Determination of the materiel parameter C, by
curve fitting on available experimental points
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Preconsolidation pressure [kPa

100
90 -

40 ® Exp (CRS tests at 5°C) |
B Exp (CRS tests at 20°C)
A Exp (CRS tests at 35°C)
— Num
30 L Y BT BT
10" 107 10° 10" 10™

Strain rate [s']

Elastic K [MPa] 16
G [MPa] 9.6
n [] 0.5
Plastic B [-] 4.6

p’. [kPa] 32

® [%] 25
0.056

Viscous C, [-]

Berthierville clay
(Boudali et al., 1994)
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Conclusion
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Conclusion

» Hydro-mechanical and viscous response are two distinct phenomena

» Inappropriate analysis of these phenomena leads to misleading

evaluation of the material response
» Viscous response is more important in clays

» VIiscous behaviour can be studied both in oedometric and triaxial tests
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Conclusion

» Viscous deformation can be reversible (visco-elastic behaviour) or non-

reversible (visco-plastic behaviour)
» Strength is affected by strain rate
» Preconsolidation pressure increases with the applied strain rate

» Apparent preconsolidation pressure is developed during constant load

application
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